1. Asumsi Normalitas
Asumsi Normalitas digunakan untuk mengetahui apakah data terdistribusi secara merata atau tidak. Uji ini untuk meyakinkan apakah data bersifat parametrik (terukur) atau nonparametrik (tidak terukur) karena kedua jenis data tersebut menggunakan alat analisis yang berbeda. Ketikda data dikatakan Normal maka dilakukan analisis Parametrik seperti Regresi. Sedangkan untuk data yang tidak Normal (Nonparametrik) maka alat analisisnya adalah Uji Komparasi.
2. Asumsi Multikolinierita
Asumsi Multikolinieritas digunakan untuk mengetahui apakah terdapat hubungan antar masing-masing variabel bebas atau independent yakni X1, X2, X3 dan seterusnya. Ketika terdapat hubungan antara X1 dan X2 maka analisis regresi berganda tidak dapat dilakukan karena variabel tersebut bisa dijadikan satu dan akan kembali menjadi analisis regresi sederhana.
3. Asumsi Heterokedastisitas
Asumsi Heterokedastisitas digunakan untuk mengetahui banyaknya data residu atau yang tidak terukur atau data yang kesalahannya semakin tinggi disebabkan meningkatnya jumlah variabel. Jika awalnya regresi sederhana hanya pengaruh X ---> Y maka tingkat kesalahannya akan semakin meningkat jika terdapat variabel X1, X2, X3, X4 dan X5 terhadap Y. Oleh karena itu perlu diluruskan kembali seberapa jauh banyaknya nilai residu tersebut ketika ditambahkan banyak variabel.
4. Asumsi Autokorelasi.
Autokorelasi dilakukan untuk jenis data Time Series yakni data yang terdiri dari tahun ke tahun. Antara tahun satu dengan berikutnya tidak boleh berhubungan satu sama lain. Dalam latihan ini sebenarnya tidak diperlukan Autokorelasi karena data berbentuk Cross-Section namun tetap dijelaskan sebagai pembelajaran pada jenis data Time Series nantinya.
Asumsi tersebut akan kita bahas dalam Uji Asumsi Klasik. Ketika suatu persamaan Regresi mengalami masalah dengan Asumsi Klasik data tersebut harus dibenahi terlebih dahulu. Berikut ini langkah-langkah dalam melakukan uji asumsi klasik:
1. Lakukan Input data seperti di bawah ini:
Input data diatas merupakan nilai rata-rata dari setiap indikator atau item pertanyaan, kita juga bisa menggunakan nilai total skor.
2. Langkah selanjutnya adalah klik Analyze --> Regression --> Linier maka akan muncul kotak dialog seperti di bawah ini:
Masukan variabel X1,X2,X3,X4 dan X5 dalam kolom Independet (Variabel Bebas) lalu masukkan Variabel Y dalam kolom Dependent (Variabel Terikat).
3. Langkah selanjutnya klik tombol Statistics lalu akan muncul kotak dialog seperti gambar di bawah ini:
Lalu centang Colinierity Diagnostics dan Durbin Watson untuk mengetahui hasil Multikolonieritas dan Autokorelasi. Lalu kilik Continue.
4. Langkah selanjutnya klik menu Plot maka akan muncul kotak dialog seperti gambar di bawah ini:
Masukkan ZPRED pada kolom X dan SRESID pada kolom Y lalu centang Histogram dan Normal Probability Plot untuk melihat Normalitas data dan Hetereokrdastisitas lalu klik Continue
5. Selanjutnya klik OK dan hasilnya akan muncul seperit di bawah ini:
Hasil analisis diatas menandakan bahwa nilai Durbin Watason adalah 1,544. Data terbebebas dari Autokorelasi jika berada diantara nilai -2 dan 2 sehingga persamaan regresi diatas terbebebas dari Autokorelasi.
Selanjutnya untuk melihat Mulitikolinieritas ditinjau dari nilai Tollerance dan VIF. Nilai Tollerance yang dibutuhkan adalah harus lebih besar dari 0,1. Nilai VIF yang dibutuhkan harus kurang dari 3. Berdasarkan hasil diatas dapat disimpulkan tidak terjadi Multiokolinieritas dalam persamaan regresi.
Hasil analisis diatas menunjukkan Normalitas suatu data. Pertama perhatikan grafik Histogramnya. Data dikatakan normal bila kurva berbentuk Lonceng. Dilihat dari gambar diatas sudah berbentuk lonceng maka data dapat dikatakan Normal. Kedua dilihat dari Plot. Data dikatakan normal bila titik-titik plot searah dengan garis dan saling terikat satu sama lain. Melihat gambar plot diatas dapat dikatakan bahwa data berdistribusi Normal.
Adakalanya Uji diatas kurang meyakinkan karena tidak memberikan angka yang pasti dan hanya berupa Gambar saja. Agar lebih meyakinkan dengan angka maka Akan kita lakukan Uji Kolmogrov Smirnof di pembahasan berikutnya.
Hasil analisis diatas menunjukkan ada atau tidaknya Heterokedadstisitas dalam data. Data dikatakan tidak ada heterokedastisitas bila titik-titik plot menyebar secara merata dan tidak membentuk pola tertentu. Meninjau gambar diatas diketahui bahwa titik-titik plot tidak menyebar secara merata bahkan cenderung membentuk pola bergaris-garis sehingga ditengarai terdapat Heterokedastisitas dalam data.
Sekali lagi bahwa hanya dengan gambar akan terlihat kurang meyakinkan. Oleh karena itu agar memperoleh angka statistik yang meyakinkan kita lakukan Uji Glejser yang akan dibahas bersamaan dengan Uji Klmogrov nanti.
UJI KOLMOGROV SMIRNOF (Normalitas) dan UJI GLEJSER (Heterokedastisitas)
Langkah pertama dalam melakukan kedua analisis tersebut hampir sama yakni klik Analyze --> Regression --> Linear maka akan muncul kotak dialog seperti di bawah ini
Pertama reset ulang kembali data agar tidak menumpuk pada hasil analisis nanti, lalu masukkan variabel X1,X2,X3,X4,dan X5 pada kolom Independent dan Y pada Dependent. Lalu klik tombol Save maka akan muncul kotak dialog seperti dibawah ini
Centang pada kolom Residual --> Unstandardized ----> Klik Continue lalu Ok
Angka yang kita butuhkan akan muncul pada menu Input Data bukan pada Output yakni pada Baris RES_1 seperti dibawah ini
Melalui angka tersebut kita akan mengetahui Normalitas suatu data dengan Uji Kolmogrov Smirnov yakni dengan cara klik menu Analyzed ---> Nonparametric Test ---> Legacy Dialog ---> 1 sample K seperti dibawah ini
Hasilnya akan muncul kotak dialog seperti dibawah ini
Masukkan Variabel Unstandardized Residual yang sudah kita peroleh tadi lalu centang kolom Normal dan klik OK maka akan menghasilkan output seperti di bawah ini:
Berdasarkan hasil diatas Data dapat dikatakan normal jika nilai signifikansi berada diatas 0,05 maka data diatas dikatakan Normal karena nilai signifikanis 0,200>0,05.
Selanjutnya untuk melakukan Uji Glejser dalam mengetahu Heterokedastisitas dapat dilakukan dengan cara yang sama bedanya kita abosolutkan nilai residual atau RES_1 yang sudah kita peroleh tadi.
Caranya kita klik Transform ---> Compute Variable maka akan muncul kotak dialog seperti gambar di bawah ini
Klik Function Group All ---> pilih Abs ---> naikkan ke atas,
Lalu masukkan Unstandardized Residual pada kolom di kiri keatas juga lalu beri nama Target Variabel AbsoultResidual (tanpa spasi) klik OK seperti pada gambar dibawah ini
Maka akan menghasilkan angka seperti dibawah ini
Setelah mendapatkan nilai Absolut Residual maka Regresikan kembali variabel X1 sampai X5 dengan Absolut Residual tadi dengan cara klik Analiyzed ----> Regression ---> Linear maka akan muncul kotak dialog seperti di bawah ini
Masukkan variabel X1 sampai X5 pada dependent lalu untuk Independent masukkan Absoult Residual tadi lalu klik Ok Hasilnya seperti di bawah ini:
Lihat pada tabel Coefficent kolom Sig. diketahui bahwa masing-masing variabel akan terjadi heterokedastisitas bila memiliki pengaruh dengan variabel residu (yang tidak terukur). Semakin berpengaruh maka residunya akan membuat persamaan menjadi kurang bagus. Dikatakan berpengaruh bila memiliki nilai dibawah 0,05. Berdasarkan kolom tadi dapat dikatakn hanya variabel X4 yang memiliki nilai dibawah 0,05 yakni 0,03< 0,05. Maka Variabel X4 mengalami masalah heterokedastisitas dan harus dikeluarkan dalam persamaan.
Demikian langkah-langkah dalam melakukan Uji Asumsi Klasik Semoga Bermanfaat.
Tidak ada komentar:
Posting Komentar